
PARSING JAVA METHOD NAMES FOR IMPROVED

SOFTWARE ANALYSIS

by

Sana Malik

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Bachelor of Science in Computer
Science with Distinction.

Spring 2011

c© 2011 Sana Malik
All Rights Reserved

PARSING JAVA METHOD NAMES FOR IMPROVED

SOFTWARE ANALYSIS

by

Sana Malik

Approved:
Vijay K. Shanker, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:
Lori Pollock, Ph.D.
Committee member from the Department of Computer Science

Approved:
Pak-Wing Fok, Ph.D.
Committee member from the Board of Senior Thesis Readers

Approved:
Donald Sparks, Ph.D.
Chair of the University Committee on Student and Faculty Honors

ACKNOWLEDGMENTS

I would like to thank my advisors, Dr. Vijay Shanker and Dr. Lori Pollock,

for their continuous support, advisement, and encouragement over the past two

years. Their guidance has taught me indispensable lessons about research that I

will carry for the rest of my career.

I am also grateful to Dr. Emily Hill for her mentorship from the very begin-

ning of my undergraduate research experience. I would also like to thank the other

members of the Software Analysis and Compilation lab for creating a supportive

atmosphere and always being willing to help in any way they could. It has been a

pleasure working with all of you.

Lastly, I would like to thank my friends and family for their support and

encouragement during my undergraduate career.

iii

TABLE OF CONTENTS

LIST OF TABLES . vii
LIST OF FIGURES . viii
ABSTRACT . ix

Chapter

1 INTRODUCTION . 1

1.1 Related Work . 2

2 OVERVIEW OF PARSING METHODOLOGY 4

2.1 The Research Process . 4

2.1.1 The Parsing Steps . 5
2.1.2 Part-of-Speech Tagging . 5
2.1.3 Chunking Phrases . 7

3 IDENTIFYING PART-OF-SPEECH TAGS 8

3.1 Affixing and Removing Suffixes . 9
3.2 Nouns . 10

3.2.1 Singular Nouns . 10
3.2.2 Plural Nouns . 11

3.3 Verbs . 12

3.3.1 Base Verbs . 12
3.3.2 Third-Person Singular Verbs (3PS) 13
3.3.3 Verbs Ending with “-ing” . 14

iv

3.3.4 Past Tense Verb . 14
3.3.5 Past Participles . 15

3.4 Modifiers . 16

3.4.1 Adjectives . 16
3.4.2 Adverbs . 16

3.5 Closed Lists . 17

4 CHUNKING PHRASES . 19

4.1 Targeted Lexical Phrases . 20

4.1.1 Noun Modifier Phrase (NM) 20
4.1.2 Noun Phrase (NP) . 21
4.1.3 Verb Group (VG) . 21
4.1.4 Past Participle Phrase (PP) 21
4.1.5 Prepositional Phrase (prepP) 21

4.2 Grammatical Constructions of Method Names 21

4.2.1 Verb Groups and Objects . 22

4.2.1.1 Verb Group (VG) . 22
4.2.1.2 Verb Group and Noun Phrase (VG NP and NP VG) 22
4.2.1.3 Verb Group, Noun Phrase, and Prepositional Phrase

(VG NP prepP) . 22
4.2.1.4 Verb Group and Prepositional Phrase (VG prepP) . 23
4.2.1.5 Verb Group, Noun Phrase, and Preposition (VG NP

prep) . 23
4.2.1.6 Verb Group and Preposition (VG prep) 23

4.2.2 Other Cases . 24

4.2.2.1 Noun Phrase (NP) 24
4.2.2.2 Past Participle Phrase (PP) 24
4.2.2.3 Adjectival Phrase (adjP) 25
4.2.2.4 Prepositional Phrase (prepP) 25

v

4.2.2.5 Special Cases . 26

4.2.2.5.1 Constructors 26
4.2.2.5.2 “Is,” “Can,” and “Has” 26

4.3 Ordering the Rules . 27
4.4 Context Frequencies . 28
4.5 Bringing It All Together . 29

5 EVALUATION . 31

5.1 Methodology . 31
5.2 Results . 31

5.2.1 Errors . 32

6 CONCLUSIONS AND FUTURE WORK 34
BIBLIOGRAPHY . 35

vi

LIST OF TABLES

2.1 Example of iterative refinement process for part-of-speech rules on
the method name decodeRequest. 6

3.1 Sample input and output for part-of-speech tagger. Each word is
followed by a list of possible tags. 9

4.1 Sample input and output for phrase chunker. “VG” denotes a verb
group, “NM” denotes a noun modifier, and “NP” denotes a noun
phrase. 20

4.2 Results from mining context frequencies of common words found in
program identifiers. The words can be either verbs or nouns, and
context frequency helps determine which is more likely. A high ratio
indicates a verb is more likely, while a low ratio indicates that a
noun is more likely. 29

vii

LIST OF FIGURES

1.1 An example of the natural language identifiers (highlighted text)
found in program code. 1

2.1 Overview of the research stages and methodology, (a)
Part-of-Speech Tagging, when all possible parts of speech for the
words in a method name are found, and (b) Phrase Chunking, when
lexical phrases are chunked together. 5

4.1 Order of grammar rule application. 30

viii

ABSTRACT

Modern software engineering tools are driven by sophisticated automatic soft-

ware analysis. Previous research indicates that the natural language (user-defined

names) provides strong lexical clues about program behavior and structure and can

be used to increase the effectiveness of various software engineering tools. Auto-

matic analysis of the natural language usage in software requires accurate automatic

parsing of the multi-word names (e.g., isPointInImage). This research focuses on de-

veloping the analysis techniques for an accurate parser for multi-word Java method

names; this includes both a part-of-speech tagger and phrase chunker. These con-

tributions form the foundation for natural language program analysis.

ix

Chapter 1

INTRODUCTION

With program code growing larger than ever, understanding code becomes

more and more difficult and time consuming. In software maintenance, developers

may spend more time locating bugs and relevant code than actually fixing them.

As developers read code, they look at not only the program structure, but also the

names (identifiers) that the programmers have used for methods, fields, and classes

in order to understand what the code does. These identifiers form the natural

language of the program code. Figure 1.1 shows an example of the natural language

identifiers found in program code.

Increasingly descriptive naming conventions allow the developers to capture

the functionality of a method or field more precisely than before. Previous re-

search indicates that the natural language in program identifiers provides strong

lexical clues about the intended program behavior and can be used to increase the

effectiveness of various software engineering tools [7], such as program search and

automatic comment generation. Many such tools have been developed, but these

Figure 1.1: An example of the natural language identifiers (highlighted text) found
in program code.

1

tools use a “bag of words” approach. That is, the relationship between words and

their meanings is not known or taken into account.

In order to use the underlying lexical clues found in program code for pro-

gram analysis, we must first design a tool to automatically parse the identifiers into

their lexical components. Although tools exist to parse natural languages, there

are none that exist specifically for the identifiers found in programming code. Non-

dictionary words are commonly used because programmers often invent new words

or grammatical structures when naming functions (methods) or variables. A new

adjective may be formed by adding “able” to a verb (e.g., “give” becomes “givable”)

or the action of a method may be inferred instead of explicitly stated (e.g., a func-

tion that computes a square root may simply be named “squareRoot” instead of

“computeSquareRoot”). Problems also arise when words do not follow any usual

pattern (as in acronyms or domain-specific words). Because of these unique con-

structions, traditional parsers for natural language fail to accurately capture the

lexical structure of program identifiers.

In this thesis, we

• examine the lexical and grammatical structures of Java method names,

• present techniques to parse these identifiers into meaningful lexical compo-

nents, and

• preform an evaluation of the accuracy of the parser.

1.1 Related Work

Høst and Østvald [11] introduced the Java Programmer’s Phrase Book, which

describes commonly used grammatical structures in Java identifiers. However, the

phrase book provides grammatical structures of specific words and their roles used in

identifiers, whereas our system generalizes the parts-of-speech for each grammatical

construction. Further, the Phrase Book only describes the phrase constructions,

2

whereas we also implement the grammatical rules, which includes presenting an

order of application. Additionally, the constructions in the phrase book are only

applied from left to right in the identifiers; our system also works right to left (which

is useful when examining phrases ending with past participles).

We are interested in the applications of parsing natural language in program

code for improved software engineering tools. Emily Hill [2] presents a model that

uses natural language in program identifiers along with program structure to im-

prove program search and exploration. The Software Word Usage Model (SWUM)

captures conceptual information about a program through its natural language iden-

tifiers and program structure. By developing more accurate parsing and thus im-

proving the way the natural language usage in program code is modeled, we can

improve the overall accuracy of the program search and navigation provided by

SWUM.

Aside from SWUM, no tool exists to automatically capture complete lexical

concepts from source code identifiers. Other work in modeling the lexical structure

of identifiers includes the Action-Oriented Identifier Graph(AOIG) [9]. However, the

AOIG is limited to modeling verbs with their direct objects, and excludes important

information such as indirect objects. Automatic tools have been developed [5, 6] to

group frequently co-occuring word pairs, but these tools do not find any relationship

between the words. Latent semantic analysis (LSA) [4] uses co-occurences of words

to group semantically related words, but this grouping corresponds only to statistical

relations, not to any linguistic relation.

3

Chapter 2

OVERVIEW OF PARSING METHODOLOGY

We developed a strategy for parsing Java method names by data mining and

analysis on 22 open source Java programs. We extracted all the method signatures

from all 22 programs. Because we are interested in tagging each word in the method

name with its part of speech and program identifiers cannot contain spaces, we first

had to identify the individual words in each method identifier. To do so, we used

Samurai [1] an automatic identifier splitter. Samurai is able to accurately tokenize

camel-case capitalized, underscore delimited, or same-case identifiers.

Our parser takes the split identifier along with the complete signature (with

parameters and return type) as input, and outputs (1) the split method name with

all possible tags for each word, and (2) the chunked lexical phrases representing the

method name.

2.1 The Research Process

Our parsing technique is divided into two main phases: (1) tagging all pos-

sible part-of-speech of each word in an identifier, and (2) using context to choose

a particular part-of-speech and chunk the identifier into its lexical components, as

show in Figure 2.1. The process for developing both stages was similar and involves

an iterative process of the steps:

1. Identify common word and grammar patterns (“categories”)

2. Develop a generalized set of parsing rules based on word and grammar patterns

4

Figure 2.1: Overview of the research stages and methodology, (a) Part-of-Speech
Tagging, when all possible parts of speech for the words in a method
name are found, and (b) Phrase Chunking, when lexical phrases are
chunked together.

3. Evaluate the effectiveness of these rules on a limited set of identifiers and

4. Expand the set of parsing rules to work on identifiers in more “categories.”

With each iteration, the parser becomes more accurate. Consider the example

in Table 2.1 for the method name decodeRequest. After the first iteration, we

consider only one rule: if a word can have an “s” at the end, it is considered to be a

noun (as it can be pluralized). By this rule, we mark both “decode” and “request”

as nouns. We then iterate again, and add a rule for identifying base verbs: if “-ing”

can be added and “-ed,” then a word is likely to be a verb. Now, both “request”

and “decode” are also tagged as base verbs, which is correct. However, “decode”

is still tagged incorrectly as a noun. We then realize that “de-” is a prefix that is

typically added to verbs, so we can eliminate this over-tagging by refining our rules

further.

2.1.1 The Parsing Steps

2.1.2 Part-of-Speech Tagging

In the first step, all possible parts of speech for each word in a split method

name are identified.

5

Iteration Added Part-of-Speech Rule Part-of-Speech Tags Identified
1 If word+s exists, word is a noun decode (noun) request (noun)
2 If word+ing and word+ed exist, decode (noun, baseV)

word is a verb request (noun, baseV)
3 If word begins with “de-,” decode (baseV) request (noun, baseV)

word is only a verb, not a noun

Table 2.1: Example of iterative refinement process for part-of-speech rules on the
method name decodeRequest.

Morphology rules were used to determine possible parts of speech because

programmers commonly use non-dictionary words when naming identifiers. Nouns

and verbs are often modified by programmers to create new words that may not

previously exist, but programmers follow the common patterns of the English lan-

guage, and most of these new words are derived from alternate forms. For example,

“poolable” is not a dictionary word, but its meaning is obvious because it follows

the English grammar of adding “-able” to the verb “to pool” to form an adjective.

To test if the base word (the word with its affix removed) is a valid dictionary word,

we used the English dictionary from the Unix spell-checking program, Ispell.

We could not use context to provide hints about the part of speech of words

because method names often omit non-critical words, and therefore do not follow the

same rules as the English grammar. For example, in English sentences, a strong in-

dicator of a noun would be those phrases preceded by a determinant (“the,” “an,” or

“a”). However, such indicators are almost always eliminated from method names, as

in the method name createTestTable, which omits the word “the” before “table.”

Furthermore, many domain-specific words are used differently in program

code than in regular English language. For example, the word “fire” is used more

commonly as a noun in English, but more often as a verb in program code. For this

reason, we could not use pre-existing part-of-speech dictionaries and parsers to find

the parts of speech of words.

The rules that were developed for finding parts-of-speech are discussed in

6

Chapter 3. After all possible parts-of-speech for a word are found, the phrase is

chunked into its lexical components, where a specific part-of-speech for each word

is selected.

2.1.3 Chunking Phrases

After identifying all parts of speech (POS) for a given word, we can use

context to select the correct part of speech in that particular instance and then group

words into meaningful lexical components. Using the part of speech of surrounding

words, as well as their position in a method name, we have a better idea of which

POS should be selected. For instance, in the phrase “get reverse direction,” reverse

can be either a verb or an adjective. However, since the phrase starts with the verb

“get,” we can eliminate the possibility of “reverse” being a verb since it is unlikely

for the phrase to have two consecutive verbs. Thus, we determine that “get” is a

verb and “reverse (adj) direction (noun)” is a noun phrase for the parsing: [get]:VG

[[reverse]:NM direction]:NP.

Similarly, there are various types of constructs that are commonly used in

method names. For example, method names starting with “is” typically check if

something is true (e.g., isFlagSet checks if a flag has been set). By parsing method

names into phrases, we are able to extract useful information about the behavior of

the method and how it interacts with relevant objects in the program.

7

Chapter 3

IDENTIFYING PART-OF-SPEECH TAGS

The parser begins by assigning all possible parts of speech (POS) for each

word in an already split method name. The tagger takes the method signature with

return and argument types, and the split method name. It outputs each word in

the method name followed by a list of possible tags. All part-of-speech tags are two

to five letter strings beginning with a lowercase letter. Sample input and output for

a method name are shown in Table 3.1.

The part-of-speech tagger assigns tags from a set of fourteen tags, which can

be divided into four categories (the tag is shown in parentheses):

• Nouns

– Singular nouns (noun)

– Plural nouns (pl.n)

• Verbs

– Base verbs (baseV) and irreg-

ular verbs (irrV)

– Third-person singular verbs

(3PS)

– Verbs ending in “-ing” (ingV)

– Past tense verbs (pastV)

– Past participles (pp)

• Modifiers

– Adverbs (adv)

– Adjectives (adj)

• Closed lists

– Articles (art), quantifiers

(quant), and pronouns (pro)

– Prepositions (prep)

8

Input int parseCharArray(char[], int, int) | parse char array

Output parse (baseV) char (noun, baseV) array (noun, baseV)

Table 3.1: Sample input and output for part-of-speech tagger. Each word is fol-
lowed by a list of possible tags.

Each word in a method name is considered independently from other words

in the method name, so context is not taken into account at all in this phase. When

assigning tags to a word, we consider all possible tags, with the exception of those

in the “Closed List” category, as discussed in Section 3.5. Therefore, the order of

application for the rules is not taken into account since every part-of-speech will be

assigned if it is a possibility.

This chapter is divided into sections for assigning each tag category and

describes the development of rules for each possible tag.

3.1 Affixing and Removing Suffixes

The tagger makes use of common prefixes and suffixes for particular word

types. We call a word with no affixes a “base” word. In adding and removing these

affixes to a base word, the spelling of the base word may change. In English, there

are three main changes to a base word when a suffix is added:

1. Changing the last “y” to “i.” This occurs when we add a suffix beginning with

a consonant to a word ending with a consonant and “-y.” For example, adding

“-ly” to “happy” becomes “happily.”

2. Remove the last “e.” This occurs when we add a suffix beginning with a vowel

to a word ending with a consonant, and “-e.” For example, the “-ing” form of

the verb “parse” becomes “parsing.”

3. Double the last letter of a word. This occurs primarily when adding a suffix

beginning with a vowel for words ending in “-t,” “-l,” “-b,” “-n,” “-d,” “-g,”

as in “running,” “bidding,” or “jogging.”

9

Similarly, when a suffix is removed, we must undo any spelling changes that

may have occurred. Since the actual part of speech does not matter when ap-

pending suffixes, the procedure for finding base words is the same throughout all

algorithms. So, without loss of generality we can create two functions that will be

used throughout the tagging algorithms:

1. append(word, suffix) - Takes a word and suffix as input, and returns a new

word with the suffix appended with the necessary spelling changes.

2. remove(word, suffix) - Takes a word and suffix as input, and returns the

base word with correct spelling changes.

3.2 Nouns

Nouns are perhaps the most challenging type of word to identify, because

their constructions are the most varied. In natural language, a strong indicator for

a noun is that it follows a determinant (e.g., “the,” “a,” and “an”). However, as

discussed in Chapter 2, these identifiers are often omitted from program identifiers.

3.2.1 Singular Nouns

The most consistent morphological identifier for singular nouns is that adding

“-s” (or “-es”) pluralizes a noun. However, this rule causes over-tagging (a word is

tagged as a noun when it should not be) because verbs also use an “-s” ending for

conjugating third-person singular. For example, the word “create” would be tagged

as a noun because “creates” exists as a word. To eliminate some of this over-tagging,

we remove the possibility of a word being a noun if it has a common verb prefix

or suffix: “re-,” “en-,” “-ify,” or “-ize.” Further, we can eliminate over-tagging by

checking if a noun suffix can be added to the word. For example, “-ance” and “-

ence” are commonly added to verbs to form nouns, so such words cannot be nouns

already.

10

Common endings for nouns are also considered: “-ity,” “-tion,” “-ist,” “-ism,”

“-ness,” and “-or.” If a word has any of these endings, we assign the noun tag. For

common abbreviations found in program code such as “init” and “ID”, we built and

check a predefined list of abbreviations.

Finally, the algorithm for deciding if a word is a singular noun is given in

Algorithm 1.

Algorithm 1: isNoun(word): decides if word is a singular noun.

Input: word
Output: true if word is a noun, false otherwise

1 begin
2 if word is in abbreviation list then
3 return true;

4 else if word begins with “re” or “de” or ends with “ify” or “ize”
then

5 return false;

6 if isWord(append(word,“ance”) or isWord(append(word,“ence”))
then

7 return false;

8 if word ends with “ity” or “tion” or “ist” or “ism” or “ness” or
“or” then

9 return true;

10 if word ends with “s” or “ch” or “x” or “z” or “sh” and
isWord(append(word,“es”)) then

11 return true;

12 if isWord(append(word,“s”)) then
13 return true;

14 else
15 return false;

3.2.2 Plural Nouns

Plural nouns are considered primarily using the rule that plural nouns end

in “-s.” If a word ends in “-es” and the base word ends in an “i,” we change the

11

“i” to a “y” and check if the base word is a noun. For “-es” words, we also check if

the base word is a noun and ends with “-s,” “-ch,” “-x,” “-sh,” or “-sh.” If either of

these are true, then the word is tagged as a plural noun.

If the word ends in only an “-s” but does not end in “-ss,” “-ius,” “-ous,” or

“-is,” we also consider it a plural noun.

The algorithm for deciding if a word is a plural noun is given in Algorithm 2.

Algorithm 2: isPlNoun(word): decides if word is a plural noun.

Input: word
Output: true if word is a plural noun, false otherwise

1 begin
2 if word ends with “es” then
3 return isNoun(remove(word,“es”));

4 if word ends with “s” but not “ss” or “is” or “us” or
isNoun(remove(word,“s”)) then

5 return true;

6 else
7 return false;

3.3 Verbs

3.3.1 Base Verbs

Words with common verb suffixes and prefixes are tagged as base verbs (e.g.,

“de-,” “re-,” “-ify,” and “-ize”).

If the word can then be conjugated as a third-person singular (adding “-s”

or “-es”) and either of the following is true, we tag it as a base verb:

1. Adding “-ing” to the word creates a word.

2. Adding “-ed” (past tense) creates a word.

For example, “create” would be a base verb because “creates” is a word and

“creating” is a word. However, “remote” would not be labelled as a base verb

12

because while “remotes” is a word, “remoting” is not. Out of a sample of 634 verbs,

this combination of rules correctly identified 93% of verbs correctly.

We developed an irregular verb list that includes commonly used verbs in

program code that are either conjugated abnormally in the English language, or are

commonly used abbreviations in program code such as: “is,” “has,” “get,” “do,”

“enum,” and “init.” These base verbs are tagged separately with irrV.

The algorithm for deciding if a word is a base verb is given in Algorithm 3.

Algorithm 3: isBaseV(word): decides if word is a base verb.

Input: word
Output: true if word is a base verb, false otherwise

1 begin
2 if word is in irregular verb list then
3 return true;

4 if word has verb prefix or suffix then
5 return true;

6 if isWord(append(word,“s”)) or isWord(append(word,“es”)) then
7 if isWord(append(word,“ing”)) or isWord(append(word,“ed”))

then
8 return true;

9 else
10 return false;

3.3.2 Third-Person Singular Verbs (3PS)

The algorithm for deciding if a word is a third-person singular verb is given

in Algorithm 4. A word is tagged as 3PS if it ends in “-s,” but not “-ous,” “-ius,”

or “-is” (since these are adjective endings) and the base word with “-s” or “-es”

removed is a verb. For example, “creates” would be tagged as third-person singular

because “create” is a base verb.

13

Algorithm 4: is3PS(word): decides if word is a third-person singular
verb.

Input: word
Output: true if word is a third-person singular verb, false otherwise

1 begin
2 if word ends with “s” but not “is” or “us” or “ss” then
3 return isBaseVerb(remove(word,“s”)) or

isBaseVerb(remove(word,“es”));

4 else
5 return false;

3.3.3 Verbs Ending with “-ing”

The algorithm for determining “-ing” verbs is given in Algorithm 5. These

are verbs in their continuous form, such as “walking” and “bending.” A word is

tagged as an “-ing” verb if it ends with “-ing” and the base word is a verb.

Algorithm 5: isIngV(word): decides if word is an “-ing” verb.

Input: word
Output: true if word is an ing verb, false otherwise

1 begin
2 if word ends with “ing” then
3 return isBaseVerb(remove(word,“ing”));

4 else
5 return false;

3.3.4 Past Tense Verb

The algorithm for determining if a word is a past tense verb is given in

Algorithm 6. If a word ends with “-ed” and the base word is a verb, we consider it

to be a past tense verb.

14

Algorithm 6: isPastV(word): decides if word is a past tense verb.

Input: word
Output: true if word is a past tense verb, false otherwise

1 begin
2 if word ends with “ed” then
3 return isBaseVerb(remove(word,“ed”)))

4 else
5 return false;

3.3.5 Past Participles

Past participles may function as the verb or a modifier in the English lan-

guage. In program code, past participles are used in event handlers or action listen-

ers, and typically come at the end of the method name, as in “onKeyPressed.”

There are two main suffixes associated with past participles: “-en” (as in

“eaten”) and “-ed” (as in “brushed”), the latter of which is also used for past tense

verbs. If a word ends in either of these suffixes, with a verb base word, we mark it

as a past participle.

We also developed a list of irregular past participles, such as “slept” and

“awoke,” and any words on this list are marked as past participles.

The algorithm for determining past participles is given in Algorithm 7.

Algorithm 7: isPP(word): decides if word is a past participle.

Input: word
Output: true if word is a past participle, false otherwise

1 begin
2 if word ends with “ed” or “en” then
3 return isBaseVerb(remove(word,“en”)) or

isBaseVerb(remove(word,“ed”));

4 else if word is in past participle list then
5 return true;

6 else
7 return false;

15

3.4 Modifiers

3.4.1 Adjectives

Words ending in “-able” or “-ible” with a verb base are tagged as adjective.

Another good indicator of adjectives is if it is a comparative. We test this by

determining if the word ends is a superlative ending in “-er” or “-est” and the base

is a dictionary word. Similarly, if either “-er” or “-est” can be added to a word to

form a new word, we mark it as an adjective.

We then attempt to add suffixes that require adjective bases. In particular,

we use the adverb suffix “-ly” and the noun suffix “-ness.” Out of a sample of 225

adjectives, these two rules alone identified 75% adjectives correctly.

The algorithm for deciding if a word is an adjective is given in Algorithm ??.

Algorithm 8: isAdj(word): decides if word is an adjective.

Input: word
Output: true if word is a adjective, false otherwise

1 begin
2 if word ends with “able” or “ible” then
3 return true;

4 if word ends with “er” or “est” and isWord(remove(word,“er”)) or
isWord(remove(word,“est”)) then

5 return true;

6 if isNoun(append(word,“ness”)) or isAdverb(append(word,“ly”))
then

7 return true;

8 else
9 return false;

3.4.2 Adverbs

The algorithm for determining if a word is an adverb is given in Algorithm 9.

The single most accurate identifier of adverbs is if the word ends in “-ly” and the base

16

word is an adjective. Most adverbs follow this rule, and commonly used adverbs in

program code that do not follow this construction are accounted for in a predefined

adverb list.

Algorithm 9: isAdv(word): decides if word is an adverb.

Input: word
Output: true if word is a adverb, false otherwise

1 begin
2 if word ends with “ly” and isAdjective(remove(word,“ly”)) then
3 return true;

4 else
5 return false;

3.5 Closed Lists

Closed lists are word types where new words are not frequently added, mainly
because there are no morphology constructions for these parts of speech. For exam-
ple, articles are limited to “the,” “a” or “an” and no new articles can be formed.
Closed lists are represented as predefined word lists in the system, and words are
determined to be any of these parts of speech by checking for membership in these
lists.

Articles, art There are only three articles in the English language: “the,” “an,”
and “a.”

Pronouns, pro and quantifiers, quant Often, the quantifiers are used as pro-
nouns, so we include these in a predefined list. For example, the quanitifer
“both” may describe a plural noun, but may be used on its own as a pronoun,
as in the phrase “get both.”

all

another

anybody

anyone

anything

both

each

everything

he

her

it

most

much

my

nobody

none

17

others

our

ours

someone

theirs

them

they

this

those

us

whoever

whom

your

yours

Prepositions, prep Prepositions are words such as “to,” “of,” or “on.”

The closed list tags differ from all tags in the system because when a word is

identified as one of these parts of speech, it does not assign any other possible tag

to the word.

18

Chapter 4

CHUNKING PHRASES

After identifying all possible parts of speech for the words in an identifier,

the parser begins chunking the method name. The chunker takes the output from

the tagger (each word in a method name followed by a list of possible tags) as input

and outputs a bracket-separated parsing of the method name. Sample input and

output for the chunker are shown in Table 4.1. Each phrase is contained inside a

set of square brackets, and the right bracket is suffixed with its phrase label. Tags

for individual rules are removed as they are implied by the lexical phrase in which

the word is contained. It is possible for lexical phrases to be nested, as in the case

of a noun modifier phrase inside a noun phrase.

Typically, method names consist of a verb group describing the action of

the method names followed by direct or indirect objects which refer to the objects

the method is acting upon, as in “create tree from constructor.” In some cases, the

direct or indirect objects may be inferred from the method’s class or arguments,

respectively. In these cases, the method name does not include the corresponding

direct or indirect object. Consider the method name moveTo(Coordinates xy).

The method implies that we are moving something to the coordinates provided in

the arguments. Most likely, we are moving an instance of the class that the method

is a part of.

Similarly, the method name may infer the action by providing only the direct

or indirect object. A common example is a method name such as “toString” which

19

Input parse (verb) char (noun, baseV) array (noun, baseV)
Output [parse]:VG [[char]:NM array]:NP

Table 4.1: Sample input and output for phrase chunker. “VG” denotes a verb
group, “NM” denotes a noun modifier, and “NP” denotes a noun
phrase.

implies that we are converting an object to a string. It is also common to not include

“calculate” or “compute” (as in squareRoot for “compute square root”).

The third type of common method name is that set of names that are con-

cerned with the state of an object. These method names are typically (1) boolean

functions that check if something about an object is true (e.g., isCachable), or (2) lis-

tener methods that respond to an action that just happened (e.g., activityStarted).

To represent a method’s behavior through its parsed lexical components, we

use five basic types of lexical phrases. All grammatical constructions are derived

from combinations of one or more of these basic lexical phrases.

In this chapter, we discuss the basic lexical components of method names,

the grammatical constructions that we developed and the way the system chooses

the most likely construct for a given method name.

4.1 Targeted Lexical Phrases

Our system uses five of the same lexical phrases that are commonly found in

the English language. In this section, we describe each type of phrase, give examples

of how it is found in method names, and present the matching pattern used in the

chunker.

4.1.1 Noun Modifier Phrase (NM)

Description A noun modifier phrase is any combination of nouns, adjectives, or
determinants that precedes a noun. For example, in “table row header”, “table
row” is a noun phrase, but since it is modifying the noun “header,” we mark
it as a noun modifier phrase.

Pattern NM → (noun|adj|pp|ingV |quant|pro)∗

20

4.1.2 Noun Phrase (NP)

Description Noun phrases consist of any type of noun (singular, plural, gerund, or
pronoun), optionally preceded by a noun modifier phrase. An example is the
method name “utc encoding limit” or “new object” in “create new object.”
Two noun phrases joined by “of” also make a noun phrase, as in “size of
array”.

Pattern NP → (NM) noun|pl.n|ingV |pro

4.1.3 Verb Group (VG)

Description A verb group ends with any word from the verb category (ingV, ba-
seV, 3PS, pastV, or irrV) and is optionally preceded by helping verbs or verb
modifiers (VM), such as adverbs.

Pattern VG → (VM) baseV |ingV |3PS|pastV |irrV

4.1.4 Past Participle Phrase (PP)

Description A past participle phrase is noun phrase followed by a past participle.
For example, in the method name isButtonPressed, “button pressed” is a
past participle phrase.

Pattern PP → pp
PP → NP (“is”|“has been”) pp

4.1.5 Prepositional Phrase (prepP)

Description A prepositional phrase is a noun or past participle phrase preceded
by a preposition. For example, in the method movePanelToFront, “to front”
is a prepositional phrase.

Pattern prepP → prep NM
prepP → prep PP

4.2 Grammatical Constructions of Method Names

All chunking rules consist of a combination of one or more of the basic lexical

phrases. Our system uses sixteen grammatical constructions, which we divide into

three categories: verbs and objects, and other cases.

21

4.2.1 Verb Groups and Objects

These constructions contain explicit actions in the form of a verb group. In

many cases, the method acts upon an object, which may or may not be indicated

in the method name.

4.2.1.1 Verb Group (VG)

Description Method names that contain only a VG are usually one word method
names.

Examples void delete(int) [delete]:VG
int insert(Object) [insert]:VG

void enable() [enable]:VG

Chunking The chunker checks if the phrase ends with a verb, and if so checks if
the rest of the method name is a verb modifier phrase.

4.2.1.2 Verb Group and Noun Phrase (VG NP and NP VG)

Description A verb group followed by a noun phrase represents a method name
with an action and direct object. It is the most common type of method
name. Less commonly, the method name can be structured like a typical
English sentence, with the subject (NP) first and the verb group second.

Examples void checkCriticalTasks(Task,List) [check]:VG [[critical]:NM
tasks]:NP

Choice showDialog(Component) [show]:VG [dialog]:NP
boolean experimentIndexExists() [[experiment] index]:NP

[exists]:VG

Chunking The algorithm splits the phrase after the first verb, and tests if the first
part of the phrase forms a verb group and if the second part forms a noun
phrase, or vice versa for the NP VG case.

4.2.1.3 Verb Group, Noun Phrase, and Prepositional Phrase (VG NP

prepP)

Description A verb group followed by a noun phrase and prepositional phrase
represents a method name with an action and both direct and indirect objects.

22

Examples File findFileInPaths() [find]:VG [file]:NP [in
[paths]:NP]:prepP

void DoPasteFromClipboard() [do]:VG [paste]:NP [from [clip-
board]:NP]:prepP

Chunking The algorithm splits the phrase after the first verb, and tests if the first
part of the phrase forms a verb group and if the second part forms a noun
phrase with a prepositional phrase.

4.2.1.4 Verb Group and Prepositional Phrase (VG prepP)

Description A verb group followed by a prepositional phrase represents a method
name with an action and an indirect object. Usually they infer a direct object
(usually the class to which they belong). These method names are not as
common as other verb and object combinations.

Examples void goToChild(int) [go]:VG [to [child]:NP]:prepP
void goToNextStep() [go]:VG [to [[next]:NM step]:NP]:prepP

Chunking The algorithm splits the phrase after the first verb, and tests if the
first part of the phrase forms a verb group and if the second part forms a
prepositional phrase.

4.2.1.5 Verb Group, Noun Phrase, and Preposition (VG NP prep)

Description A verb group followed by a noun phrase and preposition represents
a method name with an action and a direct object, with the indirect object
inferred by the object the method is called on.

Examples Object extractElementAt() [extract]:VG [element]:NP at
void DoSendTo() [do]:VG [send]:NP to

void insertNodeAt(Node,int) [insert]:VG [node]:NP at

Chunking The algorithm splits the phrase after the first verb, and tests if the first
part of the phrase forms a verb group and if the second part forms a noun
phrase followed by a preposition.

4.2.1.6 Verb Group and Preposition (VG prep)

Description A verb group followed by a preposition represents a method name
with an action and the indirect and direct objects are both inferred by the
class and method arguments.

Examples int compareTo(Object) [compare]:VG to
void dragOver(DropTargetDragEvent) [drag]:VG over

23

Chunking The algorithm checks if the last word is a preposition and if the rest of
the phrase is a verb group.

4.2.2 Other Cases

Sometimes a method may not have an action associated with it. In these

cases, the action is either implied or has already happened (as in the case of past

participles). Because the action is implied, the name of the method will describe

what the function returns.

4.2.2.1 Noun Phrase (NP)

Description Method names that contain only a NP are typically constructors,
though they also occur for commonly inferred actions such as “get” or “com-
pute.” Constructors are discussed in Section 4.2.2.5.

Examples void anotherConfig [[another]:NM config]:NP
int squareRoot(int) [[square] root]:NP

Coords lineIntersect() [[line]:NM intersect]:NP

Chunking Test if the last word is a noun, and if so, check if the rest of the phrase
is a noun modifier.

4.2.2.2 Past Participle Phrase (PP)

Description When a past participle phrase occurs by itself in a method name,
it typically describes an action that has happened or the state of an object.
Consider the example method heapifyExtended. From left to right, we would
assume “heapify” to be the verb, which would leave “extended” to be treated
as a modifier. However, if we were to describe this method in natural language,
we would say that the action of “heapifying” has been “extended.” With this,
it is clear that “extending” is the action that is being applied to “heapifying.”

Further, ambiguity is caused because method names do not contain the verb
helpers that may be found in natural language. For example, in the method
keyPressed there are two possible interpretations:

1. “pressed” describes the state that the key is in (i.e., key is pressed, and
“pressed” is modifying “key”).

2. “pressed” is an action that has occured (i.e., key has been pressed).

24

In natural language, the connotation would be clear. However, in the interest
of shortening identifiers in program code, these helpful contextual words are
left out. Instead, we have found a good indicator of this is the return type of
the method. In methods where the past participle describes a state, the return
type is often a boolean. In method names where the participle represents an
action, the return type is void.

Examples void actionPreformed(ActionEvent) [[action]:NP preformed]:PP
void mouseReleased() [[mouse]:NP released]:PP

Chunking Check the last word for a past participle first, then the rest of the phrase
for a noun phrase.

4.2.2.3 Adjectival Phrase (adjP)

Description When a noun modifier appears in a method name alone, we con-
sider it to be an adjectival phrase that refers to an object preceding the
adjective, or an inferred object if no noun phrase is present. For example,
the method Object previous() finds the previous object in a list, and the
method boolean anyEarlier(AuctionEntry) checks if there are any auction
entries earlier than the one given.

Examples Object previous() [previous]:adjP
boolean anyEarlier(AuctionEntry) [any earlier]:adjP

Chunking If the method ends in an adjective, find the first noun from right to left
to form a noun phrase (if applicable). The rest is the adjectival phrase.

4.2.2.4 Prepositional Phrase (prepP)

Description Within a method name, prepositional phrases represent indirect ob-
jects. Methods that contain only a prepositional phrase often infer some action
like “convert,” “get,” or “move.”

Examples byte[] toWindowsName(String) [to [[windows]:NM name]:NP]:prepP
XMLElements toXML() [to [XML]:NP]:prepP
void onOkPressed() [on [[ok]:NP pressed]:PP]:prepP

Chunking If the identifier begins with a preposition, we check the rest of the name
for a phrase or past participle phrase.

25

4.2.2.5 Special Cases

Special cases are method names that appear commonly and follow a typical

naming convention, such as constructors, accessors (”get” followed by a field name),

and mutators (”set” followed by a field name). Because of this, these method names

do not need to test for applicability of the other grammatical constructions. Instead,

we test method names as one of these common types and automatically apply the

correct chunking.

4.2.2.5.1 Constructors

Description Constructors are always class names, and classes typically represent
objects in a program. Because of this, if a method name is a constructor, we
automatically treat the entire phrase as a noun phrase.

Examples MoveToFrontAction(DrawingEditor) [[move to front]:NM action]:NP
WarehouseGoodsPanel(Colony) [[warehouse goods]:NM panel]:NP

OutDegreeFunction() [[out degree]:NM function]:NP

Chunking The last word of the constructor is treated as the head of the noun
phrase, and the rest is chunked as a noun modifier.

4.2.2.5.2 “Is,” “Can,” and “Has”

Description We treat methods that begin with “is,” “can,” or “has” together
because these constructs are commonly followed by a boolean field or an object
name. These constructs are classified as verbs followed by noun modifiers,
since boolean field names describe a state, as indicated in the previous section.
Similar constructs that do not begin with these three verbs are considered as
VG NM or VG PP cases.
Alternatively, non-boolean field names or constructors typically still represent
an object. Because of this, constructors and phrases following “get” and “set”
are automatically parsed as noun phrases. In a sample of about 400 method
names containing multiword field names, 78% began with “get” or “set.”

Examples BibTexEntry

getSingleCitation(String)

[get]:VG [[single] cita-
tion]:NP

boolean isAimingAtLocation() [is aiming]:VG [at [loca-
tion]:NP]:prepP

boolean isNetworkEnabled [is]:VG [[network]:NP en-
abled]:PP

26

Chunking After extracting the verb group, the rest of the method name is treated
as a past participle phrase, noun phrase, or adjectival phrase.

4.3 Ordering the Rules

Because words typically have multiple parts of speech, it is possible to ap-

ply more than one grammar construction to any method name. For example, the

method name registerID can be parsed as either [register]:VG [id]:NP or [[regis-

ter]:NM id]:NP meaning it could refer to registering an ID, or a register ID. Since

we want to select a single parsing for each method name, we need to determine

which parsing is most likely for ambiguous method names.

Because the cases described in Section 4.2.2.5 override the regular grammar

constructions, we attempt to apply those rules first. If no applicable construction is

found, we move on to the lexical phrases and combinations.

In preliminary research, we took all possible applications of constructs, then

evaluated manually which constructs should be applied. There were primarily four

combinations of overlapping constructs. Within each group, an application order

was determined based on which should be selected most often.

• VG PP and PP - In method names such as “fire activity started” and “close

button pressed,” it is difficult to determine whether the first verb is the action,

or if it is part of the action described by the past participle. Usually, the verb

describes the response to the action, so VG PP is selected over PP.

• VG NP, NP VG and NP - We found that out of a sample of 50 method names,

30 could be of NP or VG+NP. Of these 30 ambiguous method names, manual

analysis showed that 24 should be parsed as VG+NP instead of as NP.

• NP or VG - Single word method names such as “write” or “size” can be parsed

as either a noun phrase or verb group. Manual analysis showed that one-word

method names are more likely to be verbs, though both types are common.

27

• prepP and VG prepP - On analysis of 10 ambiguous method names, VG prepP

was most commonly the rule that should be selected.

Based on this analysis, more common rules are applied before less common

ones. A figure illustrating the final order of application is shown in Figure 4.1.

In ordering the grammatical rules this way, we are able to chunk most method

names accurately. However, there are still certain method names that are parsed

incorrectly because of ambiguity. For example, the method name lineIntersect

would be parsed as [line]:VG [intersect]:NP when it should be parsed as [line inter-

sect]:NP, since the VG NP construct is more likely than NP.

4.4 Context Frequencies

Until this point, we only look at how the word appears in the context of the

given method name. However, in the case of exceptions, this is not a good indicator

of how these words most commonly appear. By looking at how a word appears in

other method names, we can determine what role the word most frequently appears

in. In particular, this is helpful in deciding whether a word acts an a verb versus a

noun, as in the “line intersect” example above in Section 4.3.

We define common “verb” positions to be the beginning of method names

and singular method names. Common “noun” positions are the end of methods and

fields and singular field names. Using these rules, we took the 200 most commonly

occurring words in program code, and counted how many times they appear in

each of these positions. Ordered by the ratio of verb positions to noun positions,

we determined thresholds for when a word is certainly a verb and when a word is

certainly a noun. Before a method is parsed, we test for any possible ambiguity. If

a phrase can be parsed as both a NP and NP VG, we attempt to narrow the tags

to how it most frequently occurs. If the frequency ratio does not provide strong

evidence for either a noun or a verb, we continue parsing with both possibilities.

28

Word
Verb

Occurrences
Noun

Occurrences
Ratio
(V/N)

% Verb

Can 575 35 16.4 94.3%
Set 16102 1090 14.8 93.9%
Handle 1169 115 10.2 91.0%
Fire 331 60 5.5 84.7%
Test 1890 393 4.8 82.8%
Map 63 908 0.069 6.5%
Function 21 329 0.063 6.0%
View 46 754 0.061 5.7%
Count 77 1426 0.053 5.1%
Name 61 3881 0.015 1.5%

Table 4.2: Results from mining context frequencies of common words found in pro-
gram identifiers. The words can be either verbs or nouns, and context
frequency helps determine which is more likely. A high ratio indicates
a verb is more likely, while a low ratio indicates that a noun is more
likely.

Otherwise, we narrow the tags to whichever POS is more likely, and then continue

parsing. Table 4.2 shows examples of verb-noun ambiguous words and resulting

tags.

4.5 Bringing It All Together

After all the rules are developed and the order is determined, they are ap-

plied in succession until the method name matches one of them correctly. Context

frequency analysis is done after applying special cases, then the rest of the rules are

applied in the order described in Section 4.3. Figure 4.1 illustrates the chunking

process and order of rule application.

29

Figure 4.1: Order of grammar rule application.

30

Chapter 5

EVALUATION

In this chapter, we evaluate the parser for accuracy against ideal parsings

that capture the lexical components for a method name. We evaluated the parser

for accuracy of the overall parsings it produced. We did not look at the accuracy of

the part-of-speech tagging for individual words because a specific tag is not selected

until the phrase is being chunked, and after that point the part of speech is inferred

from the chunking.

5.1 Methodology

We evaluated the parser on a set of 195 method names that are representative

of parts-of-speech and phrase constructions from all developed categories. These

method names were randomly chosen from the 22 open source Java programs used

throughout the research process.

We parsed each method name manually to create a set of “ideal” parsings.

Each “ideal” parsing was then compared to the output of the automatic parser.

To compare, we evaluated the number of successes (where the automated parsing

matches “ideal” parsing) with the number of errors. The incorrect parsings were

then evaluated for specific reasons for failure.

5.2 Results

Of the 195 method names, 191 were parsed correctly and 4 were parsed

incorrectly. Of these four incorrect parsings, one was caused by a tagging error, one

31

was caused by context frequency thresholds, one was a construction the parser does

not handle, and the last was caused by rule order. All of these method names were

exceptions to rules that otherwise make the system more accurate.

5.2.1 Errors

Method Name: boolean isMultiline()

Automatic Parsing: [is]:VG [multiline]:NP

Ideal Parsing: [is]:VG [multiline]:adjP

This error was caused by the tagger. The word “multiline” is a construction of an

adjective describing multiline comments. However, the tagger does not recognize it

as an adjective based on the rules we use, so it is marked as a noun (the default if

no other tag is applied).

Method Name: ImageMedia countColors(ImageMedia)

Automatic Parsing: [[count]:NM colors]:NP

Ideal Parsing: [count]:VG [colors]:NP

An issue with the context frequency is when a word commonly occurs as a noun, but

sometimes as a verb. In this case, “count” appears 1426 times as a noun, but only

77 times as a verb (about 5%), so it is marked as a noun. However, this method

name represents one of the times it does act as a verb.

Method Name: AST createUsingCtor(Token, String)

Automatic Parsing: [create]:VG [[using]:NM ctor]:NP

Ideal Parsing: [create]:VG [using [ctor]:NP]:VP-ingV

The method names follows a construction which has two verb phrases and is un-

common for method names. Because of this, our parser does not account for this

type, and adding this construction may affect the accuracy of other rules, so further

analysis would need to be done before adding it. In particular, treating the gerund

32

”using” as a preposition could cause problems for “-ing” verbs that do not act as a

preposition (since this is more common).

Method Name: void closeButtonActionPerformed(ActionEvent)

Automatic Parsing: [close]:VG [[button action]:NM preformed]:PP

Ideal Parsing: [[close button]:NM action]:NP performed]:PP

Since this method name begins with a verb and ends with a past participle, there

are two possible rule applications: verb group followed by a past participle phrase

or a singular PP containing a noun phrase. The correct parsing would be to parse

“close button action” as a noun phrase inside the past participle phrase. However,

in other rules with both of these parses, the verb group, past participle is correct

more often, so the grammar applies that rule first.

33

Chapter 6

CONCLUSIONS AND FUTURE WORK

The natural language found in program identifiers provides strong lexical

clues about program behavior and can be used to increase the effectiveness of var-

ious software engineering tools. Our system parses Java method names into their

lexical phrases as a basis of understanding these lexical clues. With the parser, soft-

ware engineering tools can then take advantage of these clues for improved software

analysis, such as program search and navigation. Preliminary evaluation indicates

that our parser is highly accurate, parsing about 97% of the 195 method names in

our evaluation set correctly.

In future work, we plan to continue to improve the accuracy of this tool by

integrating abbreviation expansion to take advantage of the additional semantics

it would provide. Additionally, we would like to extend our research to not only

method names, but also field names and generalize the system to work on identifiers

in different programming languages.

34

BIBLIOGRAPHY

[1] Eric Enslen, Emily Hill, Lori Pollock, and K. Vijay-Shanker. Mining source code
to automatically split identifiers for software analysis. In 6th IEEE International
Working Conference on Mining Software Repositories, 2009.

[2] Emily Hill. Integrating natural language and program structure information to
improve software search and exploration. PhD thesis, University of Delaware,
August 2010.

[3] Emily Hill, Lori Pollock, and Vijay Shanker. Automatically capturing source
code context for software maintenance and reuse. International Conference on
Software Engineering (ICSE), May 2009.

[4] Thomas K. Landauer, Danielle S. McNamara, Simon Dennis, and Walter
Kintsch, editors. Handbook of Latent Semantic Analysis. Erlbaum, Mahwah,
NJ, USA, 2007.

[5] Yoelle S. Maarek, Daniel M. Berry, and Gail E. Kaiser. An information re-
trieval approach for automatically constructing software libraries. In IEEE
Transactions on Software Engineering, volume 17, pages 800–813, 1991.

[6] Chris Manning and Hinrich Schutze. Foundations of Statistical Natural Lan-
guage Processing. MIT Press, Cambridge, MA, USA, May 1999.

[7] Lori Pollock, Vijay Shanker, David Shepherd, Emily Hill, Zachary Fry, and
Kishen Maloor. Introducing natural language program analysis. In 7th ACM
SIGPLAN-SIGSOFT Workshop of Program Analysis for Software Tools and
Engineering, June 2007.

[8] David Shepherd, Zachary Fry, Emily Hill, Vijay Shanker, and Lori Pollock. Us-
ing natural language program analysis to locate and understand action-oriented
concerns. In International Conference on Aspect-Oriented Software Develop-
ment, April 2007.

[9] David Shepherd, Lori Pollock, and Vijay Shanker. Towards supporting on-
demand virtual remodelization using program graphs. In 5th International
Conference on Aspect-Oriented Software Development, 2006.

35

[10] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and Vijay
Shanker. Towards automatically generating summary comments for java meth-
ods. In 25th IEEE International Conference on Automated Software Engineer-
ing (ASE’10), September 2010.

[11] Einar W. Høst and Bjarte M. Østvold. The java programmer’s phrase book.
pages 322–341, 2009.

36

